Artesunate inhibits macrophage-like phenotype switching of vascular smooth muscle cells and attenuates vascular inflammatory injury in atherosclerosis via NLRP3

青蒿琥酯通过 NLRP3 抑制血管平滑肌细胞巨噬细胞样表型转换并减轻动脉粥样硬化中的血管炎症损伤

阅读:9
作者:Ping Liu, Yuqi Wang, Keke Tian, Xinyu Bai, Yaowen Wang, Yan Wang

Abstract

Inflammation is one of the main pathogenic factors of atherosclerosis (AS), and the phenotypic transformation of macrophages in human vascular smooth muscle cells (HVSMCs) contributes to the inflammatory injury of blood vessels and the formation of atherosclerotic plaques. Artesunate reportedly exerts anti-inflammatory activity against AS. Herein, we aimed to explore the artesunate-mediated anti-inflammatory and HVSMC phenotypic switch effects against AS and elucidate potential underlying mechanisms. In vitro, artesunate decreased expression of NLRP3, caspase-1, and interleukin (IL)- 1β. Artesunate significantly inhibited low-density lipoprotein (LDL) expression in HVSMCs and macrophages. In vivo, artesunate reduced atherosclerotic plaque formation in high-fat diet (HFD)-fed ApoE-/- mice, as well as decreased NLRP3 and CD68 expression in atherosclerotic plaques. Artesunate decreased serum levels of triglycerides and increased high-density lipoprotein levels in HFD-med mice; however, serum levels of total cholesterol and LDL were unaltered. Treatment with artesunate substantially increased α-smooth muscle actin expression in aortic tissues while inhibiting expression levels of NLRP3, IL-1β, heparinase, matrix metalloproteinase 9, and Krüppel-like factor 4 (KLF4). Collectively, our findings suggest that artesunate-mediated effects may involve inhibition of the ERK1/2/NF-κB/IL-1β pathway in HVSMCs via the downregulation of NLRP3 expression. Thus, artesunate could serve as a novel strategy to treat AS by inhibiting AS plaque formation and suppressing macrophage-like phenotype switching of HVSMCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。