Cyclohexane-1,2-dione hydrolase from denitrifying Azoarcus sp. strain 22Lin, a novel member of the thiamine diphosphate enzyme family

反硝化 Azoarcus sp. 菌株 22Lin 中的环己烷-1,2-二酮水解酶,是硫胺素二磷酸酶家族的新成员

阅读:6
作者:Alma K Steinbach, Sonja Fraas, Jens Harder, Anja Tabbert, Henner Brinkmann, Axel Meyer, Ulrich Ermler, Peter M H Kroneck

Abstract

Alicyclic compounds with hydroxyl groups represent common structures in numerous natural compounds, such as terpenes and steroids. Their degradation by microorganisms in the absence of dioxygen may involve a C-C bond ring cleavage to form an aliphatic intermediate that can be further oxidized. The cyclohexane-1,2-dione hydrolase (CDH) (EC 3.7.1.11) from denitrifying Azoarcus sp. strain 22Lin, grown on cyclohexane-1,2-diol as a sole electron donor and carbon source, is the first thiamine diphosphate (ThDP)-dependent enzyme characterized to date that cleaves a cyclic aliphatic compound. The degradation of cyclohexane-1,2-dione (CDO) to 6-oxohexanoate comprises the cleavage of a C-C bond adjacent to a carbonyl group, a typical feature of reactions catalyzed by ThDP-dependent enzymes. In the subsequent NAD(+)-dependent reaction, 6-oxohexanoate is oxidized to adipate. CDH has been purified to homogeneity by the criteria of gel electrophoresis (a single band at ∼59 kDa; calculated molecular mass, 64.5 kDa); in solution, the enzyme is a homodimer (∼105 kDa; gel filtration). As isolated, CDH contains 0.8 ± 0.05 ThDP, 1.0 ± 0.02 Mg(2+), and 1.0 ± 0.015 flavin adenine dinucleotide (FAD) per monomer as a second organic cofactor, the role of which remains unclear. Strong reductants, Ti(III)-citrate, Na(+)-dithionite, and the photochemical 5-deazaflavin/oxalate system, led to a partial reduction of the FAD chromophore. The cleavage product of CDO, 6-oxohexanoate, was also a substrate; the corresponding cyclic 1,3- and 1,4-diones did not react with CDH, nor did the cis- and trans-cyclohexane diols. The enzymes acetohydroxyacid synthase (AHAS) from Saccharomyces cerevisiae, pyruvate oxidase (POX) from Lactobacillus plantarum, benzoylformate decarboxylase from Pseudomonas putida, and pyruvate decarboxylase from Zymomonas mobilis were identified as the closest relatives of CDH by comparative amino acid sequence analysis, and a ThDP binding motif and a 2-fold Rossmann fold for FAD binding could be localized at the C-terminal end and central region of CDH, respectively. A first mechanism for the ring cleavage of CDO is presented, and it is suggested that the FAD cofactor in CDH is an evolutionary relict.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。