RCAS/SCL-TVA animal model allows targeted delivery of polyoma middle T oncogene to vascular endothelial progenitors in vivo and results in hemangioma development

RCAS/SCL-TVA 动物模型允许将多瘤中 T 癌基因靶向递送至体内血管内皮祖细胞,并导致血管瘤发展

阅读:5
作者:Justin Sausville, Alfredo A Molinolo, Xiangfei Cheng, Jon Frampton, Naoko Takebe, J Silvio Gutkind, Ricardo A Feldman

Conclusions

We conclude that this experimental system can specifically deliver oncogenes to vascular endothelial progenitors in vivo and cause a fatal neoplastic disease. This animal model should allow the generation of endothelial cancer stem cells in the natural environment of an immunocompetent animal, thereby enabling the recapitulation of genetic alterations that are responsible for the initiation and progression of human malignancies of endothelial origin.

Purpose

To recapitulate the generation of cancer stem cells in the context of an intact animal using a retroviral vector capable of in vivo delivery of oncogenes to primitive endothelial and hematopoietic stem cells. Experimental design: Targeting of these progenitors was achieved using transgenic mice in which the avian TVA retroviral receptor was placed under the control of the stem cell leukemia (scl/tal-1) gene promoter and SCL +19 enhancer.

Results

Injection of an avian retrovirus encoding polyoma middle T (PyMT), an oncogene that transforms endothelial cells, caused rapid lethality in all SCL-TVA mice but not in control TVA(-) littermates. The infected animals exhibited hemorrhagic foci in several organs. Histopathologic analysis confirmed the presence of hemangiomas and the endothelial origin of the PyMT-transformed cells. Surprisingly, the transformed endothelial cells contained readily detectable numbers of TVA(+) cells. By contrast, normal blood vessels had very few of these cells. The presence of TVA(+) cells in the lesions suggests that the cells originally infected by PyMT retained stem cell characteristics. Further analysis showed that the tumor cells exhibited activation of the phosphatidylinositol 3-kinase/Akt and S6/mammalian target of rapamycin pathways, suggesting a mechanism used by PyMT to transform endothelial progenitors in vivo. Conclusions: We conclude that this experimental system can specifically deliver oncogenes to vascular endothelial progenitors in vivo and cause a fatal neoplastic disease. This animal model should allow the generation of endothelial cancer stem cells in the natural environment of an immunocompetent animal, thereby enabling the recapitulation of genetic alterations that are responsible for the initiation and progression of human malignancies of endothelial origin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。