Proteome-wide modulation of degradation dynamics in response to growth arrest

响应生长停滞的蛋白质组范围的降解动力学调节

阅读:9
作者:Tian Zhang, Clara Wolfe, Andrew Pierle, Kevin A Welle, Jennifer R Hryhorenko, Sina Ghaemmaghami

Abstract

In dividing cells, cytoplasmic dilution is the dominant route of clearance for long-lived proteins whose inherent degradation is slower than the cellular growth rate. Thus, as cells transition from a dividing to a nondividing state, there is a propensity for long-lived proteins to become stabilized relative to short-lived proteins, leading to alterations in the abundance distribution of the proteome. However, it is not known if cells mount a compensatory response to counter this potentially deleterious proteostatic disruption. We used a proteomic approach to demonstrate that fibroblasts selectively increase degradation rates of long-lived proteins as they transition from a proliferating to a quiescent state. The selective degradation of long-lived proteins occurs by the concurrent activation of lysosomal biogenesis and up-regulation of macroautophagy. Through this mechanism, quiescent cells avoid the accumulation of aged long-lived proteins that would otherwise result from the absence of cytoplasmic dilution by cell division.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。