mTOR complex 1 activity is required to maintain the canonical endocytic recycling pathway against lysosomal delivery

mTOR复合物1活性是维持典型的内吞循环途径以防止溶酶体传递所必需的

阅读:7
作者:Kristin Dauner, Walaa Eid, Riya Raghupathy, John F Presley, Xiaohui Zha

Abstract

The plasma membrane of mammalian cells undergoes constitutive endocytosis, endocytic sorting, and recycling, which delivers nutrients to the lysosomes. The receptors, along with membrane lipids, are normally returned to the plasma membrane to sustain this action. It is not known, however, whether this process is influenced by metabolic conditions. Here we report that endocytic recycling requires active mechanistic target of rapamycin (aka mammalian target of rapamycin) (mTORC1), a master metabolic sensor. Upon mTORC1 inactivation, either by starvation or by inhibitor, recycling receptors and plasma membrane lipids, such as transferrin receptors and sphingomyelin, are delivered to the lysosomes. This lysosomal targeting is independent of canonical autophagy: both WT and Atg5-/- mouse embryonic fibroblasts responded similarly. Furthermore, we identify hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs), an endosomal sorting complexes required for transport (ESCORT-0) component, as a downstream target of mTORC1. Hrs requires mTORC1 activity to maintain its protein expression level. Silencing Hrs without decreasing mTORC1 activity is sufficient to target transferrin and sphingomyelin to the lysosomes. It is thus evident that the canonical recycling pathway is under the regulation of mTORC1 and likely most predominant in proliferating cells where mTORC1 is highly active.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。