Direct Current Electric Field Stimulates Nitric Oxide Production and Promotes NO-Dependent Angiogenesis: Involvement of the PI3K/Akt Signaling Pathway

直流电场刺激一氧化氮生成促进NO依赖性血管生成:PI3K/Akt信号通路的参与

阅读:4
作者:Xing Wei, Linbo Guan, Ping Fan, Xinghui Liu, Rui Liu, Yu Liu, Huai Bai

Abstract

Electric fields (EFs) promote angiogenesis in vitro and in vivo. These results indicate the feasibility of the application of EFs to modulate angiogenesis. Nitric oxide (NO) derived from endothelial nitric oxide synthase (eNOS) is an important regulator of angiogenesis. However, the role of direct current EFs in eNOS activity and expression in association with angiogenesis of endothelial cells has not been investigated. In the present study, we stimulated human umbilical vein endothelial cells (HUVECs) with EFs and evaluated the activity and expression of eNOS. EFs induced significant phosphorylation of eNOS, upregulation of the expression of eNOS protein, and an increase in NO production from HUVECs. L-NAME, a specific inhibitor of eNOS, abolished EF-induced HUVEC angiogenesis. EFs stimulated Akt activation. Inhibition of PI3K activity inhibited EF-mediated Akt and eNOS activation and inhibited NO production in the endothelial cells. Moreover, EFs stimulated HUVEC proliferation and enhanced the S phase cell population of the cell cycle. We conclude that EFs stimulate eNOS activation and NO production via a PI3K/Akt-dependent pathway. Thus, activation of eNOS appears to be one of the key signaling pathways necessary for EF-mediated angiogenesis. These novel findings suggest that NO signaling may have an important role in EF-mediated endothelial cell function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。