Genetically Defined Syngeneic Mouse Models of Ovarian Cancer as Tools for the Discovery of Combination Immunotherapy

利用基因定义的同源卵巢癌小鼠模型作为发现联合免疫疗法的工具

阅读:1
作者:Sonia Iyer ,Shuang Zhang ,Simge Yucel ,Heiko Horn ,Sean G Smith ,Ferenc Reinhardt ,Esmee Hoefsmit ,Bimarzhan Assatova ,Julia Casado ,Marie-Charlotte Meinsohn ,M Inmaculada Barrasa ,George W Bell ,Fernando Pérez-Villatoro ,Kaisa Huhtinen ,Johanna Hynninen ,Jaana Oikkonen ,Pamoda M Galhenage ,Shailja Pathania ,Paula T Hammond ,Benjamin G Neel ,Anniina Farkkila ,David Pépin ,Robert A Weinberg

Abstract

Despite advances in immuno-oncology, the relationship between tumor genotypes and response to immunotherapy remains poorly understood, particularly in high-grade serous tubo-ovarian carcinomas (HGSC). We developed a series of mouse models that carry genotypes of human HGSCs and grow in syngeneic immunocompetent hosts to address this gap. We transformed murine-fallopian tube epithelial cells to phenocopy homologous recombination-deficient tumors through a combined loss of Trp53, Brca1, Pten, and Nf1 and overexpression of Myc and Trp53 R172H, which was contrasted with an identical model carrying wild-type Brca1. For homologous recombination-proficient tumors, we constructed genotypes combining loss of Trp53 and overexpression of Ccne1, Akt2, and Trp53 R172H, and driven by KRAS G12V or Brd4 or Smarca4 overexpression. These lines form tumors recapitulating human disease, including genotype-driven responses to treatment, and enabled us to identify follistatin as a driver of resistance to checkpoint inhibitors. These data provide proof of concept that our models can identify new immunotherapy targets in HGSC. SIGNIFICANCE: We engineered a panel of murine fallopian tube epithelial cells bearing mutations typical of HGSC and capable of forming tumors in syngeneic immunocompetent hosts. These models recapitulate tumor microenvironments and drug responses characteristic of human disease. In a Ccne1-overexpressing model, immune-checkpoint resistance was driven by follistatin.This article is highlighted in the In This Issue feature, p. 211.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。