Conclusions
JGP effectively suppressed the cellular function of RAW264.7 cells by down-regulating the IL-6/STAT3 signaling pathway and modulating macrophage M1/M2 polarization. These findings provide valuable theoretical and experimental basis for considering the potential clinical application of JGP in the treatment of immune-mediated liver injury in clinical practice.
Methods
RAW264.7 cells were randomly divided into six groups for 24 h: control, lipopolysaccharide (LPS), overexpression, 1% JGP, 2% JGP, 4% JGP, 8% JGP and 16% JGP. The effects of JGP on RAW264.7 cell proliferation were assessed using colony formation assays and cell counting kit-8 (CCK-8) assays. The Transwell assay was used to evaluate its impact on RAW264.7 cell migration. Moreover, we analysed the interleukin-6 (IL-6)/signal transducer and activator of the transcription 3 (IL-6/STAT3) signaling pathway using quantitative real-time PCR and Western blotting. Furthermore, we examined the M1/M2 polarization levels.
Objective
This study explored the inhibitory effects, polarization and potential mechanisms associated with JGP in macrophages. Materials and
Results
Unlike LPS stimulation, JGP serum treatment markedly suppressed macrophage proliferation and migration capacity, while STAT3 overexpression enhanced RAW264.7 cell proliferation and migration. JGP inhibited the proliferation and migration of RAW264.7 cells by attenuating the IL-6/STAT3 signaling pathway. Furthermore, it inhibited macrophage M1 polarization, promoting M2 polarization.
