Conclusion
These initial findings point to GGOH in a bone cement carrier as a useful therapeutic approach to prevent or mitigate the pathogenesis of MRONJ.
Methods
3H labelled GGOH (2 mM) was incorporated into a Hydroset bone cement pellet and release from the cement was assessed over time. To assess the effect on bone cell function, the GGOH-loaded cement was placed in a porous filter above cultured osteoclasts treated with bisphosphonate and the effect on osteoclast survival and function were measured. In a pilot study the effect of GGOH on osteotomy microstructure was measured in a rat model of MRONJ using a split mouth design.
Results
The release of GGOH from bone cement increased osteoclast survival/metabolic activity, and promoted resorption of the calcified substrate. In vivo released GGOH limited the effects of the bisphosphonate and promoted healing. In an animal pilot study, GGOH from the infused cement carrier stabilizes bone structure and restores the ability of osteoclasts to remodel.
