Cell Surface Modification-Mediated Primary Intestinal Epithelial Cell Culture Platforms for Assessing Host-Microbiota Interactions

用于评估宿主-微生物群相互作用的细胞表面修饰介导的原代肠上皮细胞培养平台

阅读:8
作者:Panida Sittipo, Laurensia Danis Anggradita, Hyunbum Kim, Chanyoung Lee, Nathaniel S Hwang, Yun Kyung Lee, Yongsung Hwang

Background

Intestinal epithelial cells (IECs) play a crucial role in regulating the symbiotic relationship between the host and the gut microbiota, thereby allowing them to modulate barrier function, mucus production, and aberrant inflammation. Despite their importance, establishing an effective ex vivo culture method for supporting the prolonged survival and function of primary IECs remains challenging. Here, we

Conclusions

Our study provides a layer-by-layer-based co-culture platform to support the prolonged survival of primary IECs and their features, which is important for understanding IEC function in response to the gut microbiota.

Methods

Recognizing the crucial role of fibroblast-IEC crosstalk, we employed a cell surface modification strategy, establishing layer-to-layer contacts between fibroblasts and IECs. This involved combining negatively charged chondroitin sulfate on cell surfaces with a positively charged chitosan thin film between cells, enabling direct intercellular transfer. Validation included assessments of cell viability, efficiency of dye transfer, and IEC function upon lipopolysaccharide (LPS) treatment.

Results

Our findings revealed that the layer-by-layer co-culture platform effectively facilitates the transfer of small molecules through gap junctions, providing vital support for the viability and function of primary IECs from both the small intestine and colon for up to 5 days, as evident by the expression of E-cadherin and Villin. Upon LPS treatment, these IECs exhibited a down-regulation of Villin and tight junction genes, such as E-cadherin and Zonula Occludens-1, when compared to their nontreated counterparts. Furthermore, the transcription level of Lysozyme exhibited an increase, while Mucin 2 showed a decrease in response to LPS, indicating responsiveness to bacterial molecules. Conclusions: Our study provides a layer-by-layer-based co-culture platform to support the prolonged survival of primary IECs and their features, which is important for understanding IEC function in response to the gut microbiota.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。