Identifying Antisense Oligonucleotides to Disrupt Small RNA Regulated Antibiotic Resistance via a Cell-Free Transcription-Translation Platform

通过无细胞转录翻译平台识别反义寡核苷酸以破坏小 RNA 调控的抗生素耐药性

阅读:5
作者:Min Jen Tsai, Raphael Angelo I Zambrano, Jeremiah Lyn Susas, Lizette Silva, Melissa K Takahashi

Abstract

Bacterial small RNAs (sRNAs) regulate many important physiological processes in cells, including antibiotic resistance and virulence genes, through base-pairing interactions with mRNAs. Antisense oligonucleotides (ASOs) have great potential as therapeutics against bacterial pathogens by targeting sRNAs such as MicF, which regulates outer membrane protein OmpF expression and limits the permeability of antibiotics. Here we devised a cell-free transcription-translation (TX-TL) assay to identify ASO designs that sufficiently sequester MicF. ASOs were then ordered as peptide nucleic acids conjugated to cell-penetrating peptides (CPP-PNA) to allow for effective delivery into bacteria. Subsequent minimum inhibitory concentration (MIC) assays demonstrated that simultaneously targeting the regions of MicF responsible for sequestering the start codon and the Shine-Dalgarno sequence of ompF with two different CPP-PNAs synergistically reduced the MIC for a set of antibiotics. This investigation offers a TX-TL-based approach to identify novel therapeutic candidates to combat intrinsic sRNA-mediated antibiotic resistance mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。