Efficient entry of cell-penetrating peptide nona-arginine into adherent cells involves a transient increase in intracellular calcium

细胞穿透肽九聚精氨酸有效进入粘附细胞需要细胞内钙的短暂增加

阅读:4
作者:Kamran Melikov, Ann Hara, Kwabena Yamoah, Elena Zaitseva, Eugene Zaitsev, Leonid V Chernomordik

Abstract

Understanding the mechanism of entry of cationic peptides such as nona-arginine (R9) into cells remains an important challenge to their use as efficient drug-delivery vehicles. At nanomolar to low micromolar R9 concentrations and at physiological temperature, peptide entry involves endocytosis. In contrast, at a concentration ≥10 μM, R9 induces a very effective non-endocytic entry pathway specific for cationic peptides. We found that a similar entry pathway is induced at 1-2 μM concentrations of R9 if peptide application is accompanied by a rapid temperature drop to 15°C. Both at physiological and at sub-physiological temperatures, this entry mechanism was inhibited by depletion of the intracellular ATP pool. Intriguingly, we found that R9 at 10-20 μM and 37°C induces repetitive spikes in intracellular Ca(2+) concentration. This Ca(2+) signalling correlated with the efficiency of the peptide entry. Pre-loading cells with the Ca(2+) chelator BAPTA (1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid) inhibited both Ca(2+) spikes and peptide entry, suggesting that an increase in intracellular Ca(2+) precedes and is required for peptide entry. One of the hallmarks of Ca(2+) signalling is a transient cell-surface exposure of phosphatidylserine (PS), a lipid normally residing only in the inner leaflet of the plasma membrane. Blocking the accessible PS with the PS-binding domain of lactadherin strongly inhibited non-endocytic R9 entry, suggesting the importance of PS externalization in this process. To conclude, we uncovered a novel mechanistic link between calcium signalling and entry of cationic peptides. This finding will enhance our understanding of the properties of plasma membrane and guide development of future drug-delivery vehicles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。