Self-organizing glycolytic waves fuel cell migration and cancer progression

自组织糖酵解波燃料电池迁移和癌症进展

阅读:8
作者:Huiwang Zhan, Dhiman Sankar Pal, Jane Borleis, Chris Janetopoulos, Chuan-Hsiang Huang, Peter N Devreotes

Abstract

Glycolysis has traditionally been thought to take place in the cytosol but we observed the enrichment of glycolytic enzymes in propagating waves of the cell cortex in human epithelial cells. These waves reflect excitable Ras/PI3K signal transduction and F-actin/actomyosin networks that drive cellular protrusions, suggesting that localized glycolysis at the cortex provides ATP for cell morphological events such as migration, phagocytosis, and cytokinesis. Perturbations that altered cortical waves caused corresponding changes in enzyme localization and ATP production whereas synthetic recruitment of glycolytic enzymes to the cell cortex enhanced cell spreading and motility. Interestingly, the cortical waves and ATP levels were positively correlated with the metastatic potential of cancer cells. The coordinated signal transduction, cytoskeletal, and glycolytic waves in cancer cells may explain their increased motility and their greater reliance on glycolysis, often referred to as the Warburg effect.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。