Bortezomib resistance in a myeloma cell line is associated to PSMβ5 overexpression and polyploidy

骨髓瘤细胞系中硼替佐米的耐药性与 PSMβ5 过表达和多倍体有关

阅读:6
作者:Patricia Balsas, Patricia Galán-Malo, Isabel Marzo, Javier Naval

Abstract

Bortezomib is a proteasome inhibitor important to the therapy of multiple myeloma (MM), though a number of patients show resistance to this drug. To study the cellular basis of this resistance we have generated a MM cell line displaying enhanced (5-6-fold) resistance to bortezomib by serial cultivation of RPMI 8226 cells with increasing concentrations of this drug. Bortezomib-resistant cells (8226/7B) became bigger in size than parental cells and nearly doubled the amount of DNA per cell, evolving from hypotriploidy to near-tetraploidy. 8226/7B displayed lowered Noxa accumulation and reduced caspase-3 activation in response to bortezomib. Resistant 8226/7B cells overexpressed the PSMβ5 proteasome subunit, the molecular target of bortezomib, both at the mRNA and protein level. No mutations were detected in the PSMβ5 gene. Bortezomib-resistant cells were roughly as sensitive as parental cells to other chemotherapeutic drugs, including doxorubicin, melphalan, vincristine, BMS-214662 and BMS-345541. 8226/7B cells showed partial and high cross-resistance to the proteasome inhibitors epoxomicin and MG-132, respectively. Co-treatment with the histone deacetylase inhibitor trichostatin A (TSA) potentiated bortezomib-induced apoptosis in parental RPMI 8226 cells but did not revert bortezomib resistance in 8226/7B cells. Therefore, treatment of bortezomib-refractory myeloma with drugs targeting molecular structures other than proteasome seems to be the more suitable therapeutic strategy to overcome bortezomib resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。