Therapy-Induced Stromal Senescence Promoting Aggressiveness of Prostate and Ovarian Cancer

治疗诱导的基质衰老促进前列腺癌和卵巢癌的侵袭性

阅读:7
作者:Elisa Pardella, Erica Pranzini, Ilaria Nesi, Matteo Parri, Pietro Spatafora, Eugenio Torre, Angela Muccilli, Francesca Castiglione, Massimiliano Fambrini, Flavia Sorbi, Paolo Cirri, Anna Caselli, Martin Puhr, Helmut Klocker, Sergio Serni, Giovanni Raugei, Francesca Magherini, Maria Letizia Taddei

Abstract

Cancer progression is supported by the cross-talk between tumor cells and the surrounding stroma. In this context, senescent cells in the tumor microenvironment contribute to the development of a pro-inflammatory milieu and the acquisition of aggressive traits by cancer cells. Anticancer treatments induce cellular senescence (therapy-induced senescence, TIS) in both tumor and non-cancerous cells, contributing to many detrimental side effects of therapies. Thus, we focused on the effects of chemotherapy on the stromal compartment of prostate and ovarian cancer. We demonstrated that anticancer chemotherapeutics, regardless of their specific mechanism of action, promote a senescent phenotype in stromal fibroblasts, resulting in metabolic alterations and secretion of paracrine factors, sustaining the invasive and clonogenic potential of both prostate and ovarian cancer cells. The clearance of senescent stromal cells, through senolytic drug treatment, reverts the malignant phenotype of tumor cells. The clinical relevance of TIS was validated in ovarian and prostate cancer patients, highlighting increased accumulation of lipofuscin aggregates, a marker of the senescent phenotype, in the stromal compartment of tissues from chemotherapy-treated patients. These data provide new insights into the potential efficacy of combining traditional anticancer strategies with innovative senotherapy to potentiate anticancer treatments and overcome the adverse effects of chemotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。