Enhanced antitumor effects of follicle-stimulating hormone receptor-mediated hexokinase-2 depletion on ovarian cancer mediated by a shift in glucose metabolism

促卵泡激素受体介导的己糖激酶-2 耗竭对卵巢癌的增强抗肿瘤作用是由葡萄糖代谢的变化介导的

阅读:6
作者:Meng Zhang, Qiyu Liu, Mingxing Zhang, Cong Cao, Xiaoxia Liu, Mengyu Zhang, Guiling Li, Congjian Xu, Xiaoyan Zhang

Background

Most cancers favor glycolytic-based glucose metabolism. Hexokinase-2 (HK2), the first glycolytic rate-limiting enzyme, shows limited expression in normal adult tissues but is overexpressed in many tumor tissues, including ovarian cancer. HK2 has been shown to be correlated with the progression and chemoresistance of ovarian cancer and could be a therapeutic target. However, the systemic toxicity of HK2 inhibitors has limited their clinical use. Since follicle-stimulating hormone (FSH) receptor (FSHR) is overexpressed in ovarian cancer but not in nonovarian healthy tissues, we designed FSHR-mediated nanocarriers for HK2 shRNA delivery to increase tumor specificity and decrease toxicity.

Conclusions

These results established HK2 as an effective therapeutic target even for cisplatin-resistant ovarian cancer and suggested a promising targeted therapeutic approach.

Results

HK2 shRNA was encapsulated in a polyethylene glycol-polyethylenimine copolymer modified with the FSH β 33-53 or retro-inverso FSH β 33-53 peptide. The nanoparticle complex with FSH peptides modification effectively depleted HK2 expression and facilitated a shift towards oxidative glucose metabolism, with evidence of increased oxygen consumption rates, decreased extracellular acidification rates, and decreased extracellular lactate and glucose consumption in A2780 ovarian cancer cells and cisplatin-resistant A2780CP counterpart cells. Consequently, cell proliferation, invasion and migration were significantly inhibited, and tumor growth was suppressed even in cisplatin-resistant ovarian cancer. No obvious systemic toxicity was observed in mice. Moreover, the nanoparticle complex modified with retro-inverso FSH peptides exhibited the strongest antitumor effects and effectively improved cisplatin sensitivity by regulating cisplatin transport proteins and increasing apoptosis through the mitochondrial pathway. Conclusions: These results established HK2 as an effective therapeutic target even for cisplatin-resistant ovarian cancer and suggested a promising targeted therapeutic approach.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。