ELABELA/APJ Axis Prevents Diabetic Glomerular Endothelial Injury by Regulating AMPK/NLRP3 Pathway

ELABELA/APJ 轴通过调节 AMPK/NLRP3 通路预防糖尿病肾小球内皮损伤

阅读:9
作者:Zhida Chen #, Zhe Wang #, Yepeng Hu, Huangbo Lin, Li Yin, Jing Kong, Yikai Zhang, Bibi Hu, Tiekun Li, Xianan Zheng, Qiongying Yang, Shu Ye, Shengyao Wang, Qiao Zhou, Chao Zheng

Abstract

ELABELA (ELA), a recently discovered peptide, is highly expressed in adult kidneys and the endothelium system. It has been identified as a novel endogenous ligand for the apelin receptor (APJ). This study aims to investigate the role of ELA in diabetic glomerular endothelial pyroptosis and its underlying mechanism. Initially, a significant decrease in ELA mRNA levels was observed in the renal cortex of db/db mice and high glucose-treated glomerular endothelial cells (GECs). It was also found that ELA deficiency in ELA+/- mice significantly accelerated diabetic glomerular injury, as shown by exacerbated glomerular morphological damage, increased serum creatine and blood urea nitrogen, and elevated 24-h urinary albumin excretion. In addition, in vivo overexpression of ELA prevented diabetic glomerular injury, reduced von Willebrand factor expression, restored endothelial marker CD31 expression, and attenuated the production of adhesive molecules such as intercellular adhesion molecule-1 and vascular cell adhesion molecule-1. Furthermore, in vitro studies confirmed that treatment with ELA inhibited GEC injury by regulating the NOD-like receptor protein 3 (NLRP3) inflammasome, as indicated by blocking NLRP3 inflammasome formation, decreasing cleaved Caspase-1 production, and inhibiting interleukin-1β and interleukin-18 production. Moreover, in vitro experiments demonstrated that the protective effects of ELA in GECs during hyperglycemia were diminished by inhibiting adenosine monophosphate-activated protein kinase (AMPK) using Compound C or by APJ deficiency. Taken together, this study provides the first evidence that ELA treatment could prevent diabetic glomerular endothelial injury, which is partly mediated by the regulation of the AMPK/NLRP3 signaling pathway. Therefore, pharmacologically targeting ELA may serve as a novel therapeutic strategy for diabetic kidney disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。