MicroRNA expression profiling of endocrine sensitive and resistant breast cancer cell lines

内分泌敏感和耐药乳腺癌细胞系的 microRNA 表达谱分析

阅读:5
作者:Maitham A Khajah, Alyaa Al-Ateyah, Yunus A Luqmani

Background

MicroRNAs (miRs) regulate gene expression through translation inhibition of target mRNAs. One of the most promising approaches for cancer therapy is through mimicking or antagonizing the action of miRs. In this report, we analyzed the miRnome profile of several human breast cancer cell lines to determine the influence of estrogen receptor (ER) silencing previously shown to result in epithelial to mesenchymal transition (EMT) and enhanced tumor invasion.

Conclusions

These data suggest that differences in miR expression can be exploited not only as mediators (using mimics) and targets (using miR antagonists) for general cancer therapies aimed at regulating either individual or multiple mRNAs, but also to re-sensitize endocrine resistant breast cancers by turning them back into a type that will be susceptible to endocrine agents.

Methods

MicroRNA extracted from MDA-MB-231 (de novo ER-) and ER-silenced (acquired ER-) pII and IM-26 or ER-expressing (YS1.2) siRNA transfected derivatives of MCF7 cells was deep sequenced on Illumina NextSeq500. Respective miRnomes were compared with edgeR package in R and Venny2.1 and target prediction performed with miRTarBase. Mimics and inhibitors of selected differentially expressed miRs associated with EMT mediators (miR-200c-3p targeting ZEB1, miR-449a targeting δ-catenin and miR-29a-3p) were transfected into pII cells and mRNA targets, as well as E-cadherin and keratin 19 (epithelial and mesenchymal markers respectively) were measured using taqman PCR.

Results

Each cell line expressed about 20% of the total known human miRnome; There was a high degree of similarity between the 3 tested ER-lines. Out of these expressed miRs, 50-60% were significantly differentially expressed between ER- and ER + lines. Transfection of miR-200c-3p mimic into pII cells down regulated ZEB1 and vimentin, and increased E-cadherin and keratin 19 with accompanying morphological changes, and reduced cell motility, reflecting a reversal back into an epithelial phenotype. On the other hand, transfecting pII with miR-449a inhibitor reduced cell invasion but did not induce EMT. Transfecting pII cell line with the mimic or inhibitor of miR-29a-3p showed no change in EMT markers or cell invasion suggesting that the EMT induced by loss of ER function can be reversed by blocking some but not just any random EMT-associated genes. Conclusions: These data suggest that differences in miR expression can be exploited not only as mediators (using mimics) and targets (using miR antagonists) for general cancer therapies aimed at regulating either individual or multiple mRNAs, but also to re-sensitize endocrine resistant breast cancers by turning them back into a type that will be susceptible to endocrine agents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。