Sorafenib induces mitochondrial dysfunction and exhibits synergistic effect with cysteine depletion by promoting HCC cells ferroptosis

索拉非尼诱导线粒体功能障碍,并通过促进肝癌细胞铁死亡与半胱氨酸耗竭产生协同作用

阅读:5
作者:Yanchun Li, Jun Xia, Fangchun Shao, Yan Zhou, Jiaqi Yu, Hengyu Wu, Jing Du, Xueying Ren

Abstract

Hepatocellular carcinoma (HCC) is one of the most common malignant cancers worldwide. The prognosis of HCC remains poor. Currently, sorafenib is the first-line drug for advanced HCC. Although sorafenib's mechanism of action involving several established cancer-related protein kinase targets is well-characterized, the underlying molecular mechanism is still unclear. Here, we found that sorafenib inhibited viability, proliferation, and migration of HCC cells in a dose-dependent manner. Sorafenib treatment of HCC cells destroyed mitochondrial morphology, accompanied by decreased activity of oxidative phosphorylation, collapse of mitochondrial membrane potential, and reduced synthesis of ATP, with consequent cell death due to ferroptosis. Pharmacological utilization of glutathione (GSH) rescued the sorafenib-induced ferroptosis, eliminated the accumulation of cellular mitochondrial reactive oxygen species (ROS), and lipid peroxide. GSH depletion through cysteine deprivation or cysteinase inhibition exacerbated sorafenib-induced ferroptotic cell death and lipid peroxides generation, and enhanced oxidative stress and mitochondrial ROS accumulation. Collectively, these findings indicate that depletion of cysteine acts synergistically with sorafenib and renders HCC cells vulnerable to ferroptosis, presenting the potential value of new therapeutic combinations for advanced HCC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。