Simultaneous Enhancement of Lithium Transfer Kinetics and Structural Stability in Dual-Phase TiO2 Electrodes by Ruthenium Doping

钌掺杂同时增强双相 TiO2 电极中的锂转移动力学和结构稳定性

阅读:5
作者:Jie Zheng, Rui Xia, Najma Yaqoob, Payam Kaghazchi, Johan E Ten Elshof, Mark Huijben

Abstract

Dual-phase TiO2 consisting of bronze and anatase phases is an attractive electrode material for fast-charging lithium-ion batteries due to the unique phase boundaries present. However, further enhancement of its lithium storage performance has been hindered by limited knowledge on the impact of cation doping as an efficient modification strategy. Here, the effects of Ru4+ doping on the dual-phase structure and the related lithium storage performance are demonstrated for the first time. Structural analysis reveals that an optimized doping ratio of Ru:Ti = 0.01:0.99 (1-RTO) is vital to maintain the dual-phase configuration because the further increment of Ru4+ fraction would compromise the crystallinity of the bronze phase. Various electrochemical tests and density functional theory calculations indicate that Ru4+ doping in 1-RTO enables more favorable lithium diffusion in the bulk for the bronze phase as compared to the undoped TiO2 (TO) counterpart, while lithium kinetics in the anatase phase are found to remain similar. Furthermore, Ru4+ doping leads to a better cycling stability for 1-RTO-based electrodes with a capacity retention of 82.1% after 1200 cycles at 8 C as compared to only 56.1% for TO-based electrodes. In situ X-ray diffraction reveals a reduced phase separation in the lithiated anatase phase, which is thought to stabilize the dual-phase architecture during extended cycling. The simultaneous enhancement of rate ability and cycling stability of dual-phase TiO2 enabled by Ru4+ doping provides a new strategy toward fast-charging lithium-ion batteries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。