5-LOX, 12-LOX and 15-LOX in immature forms of human leukemic blasts

人类白血病细胞未成熟形式中的 5-LOX、12-LOX 和 15-LOX

阅读:5
作者:Christelle Vincent, Rémi Fiancette, Magali Donnard, Dominique Bordessoule, Pascal Turlure, Franck Trimoreau, Yves Denizot

Abstract

Several reports have demonstrated an important role of leukotriene B(4) (LTB(4)) in the immune system. We investigated whether leukemic blasts from acute myeloid leukemic (AML) and acute lymphoid leukemic (ALL) patients produced LTB(4), 12- and 15-hydroxyeicosatetraenoic acids (12-HETE and 15-HETE) and whether these compounds affected blast proliferation and apoptosis. Leukemic blasts from AML M(0-2) and ALL patients expressed 5-LOX, 12-LOX and 15-LOX transcripts. Quantitative polymerase chain reaction indicated that 5-LOX transcripts were far more abundant than 12-LOX and 15-LOX ones. Leukemic blasts expressed 5-LOX activating protein (FLAP) transcripts and produced LTB(4) in response to calcium ionophore. In contrast no 15-HETE production was found. Calcium ionophore-stimulated leukemic blasts produced 12-HETE but also released thromboxane A(2) suggesting that contaminating platelets accounted for the release of these compounds. No significant effect of LTB(4), 12-HETE or 15-HETE could be documented on leukemic blast growth and on their apoptose rate. Results of the present study indicate that immature form of leukemic blasts produce LTB(4). However, the three major lipoxygenase metabolites of arachidonic acid; i.e., LTB(4), 12-HETE or 15-HETE, had no evident effect on their growth and apoptosis. We may speculate that LTB(4)-derived blast cells might initiate, augment or prolong tissue inflammation and damages by affecting the marrow and blood cytokine network.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。