Design and Investigation of a Dynamic Auto-Adjusting Ejector for the MED-TVC Desalination System Driven by Solar Energy

太阳能驱动的MED-TVC海水淡化系统动态自调节喷射器的设计与研究

阅读:5
作者:Jianbo Ren, Heli Zhao, Min Wang, Chao Miao, Yingzhen Wu, Qiang Li

Abstract

Ejectors have been widely used in multi-effect distillation, thermal vapor compression (MED-TVC) desalination systems due to their simple structures and low energy consumption. However, traditional fixed geometry ejectors fail to operate under unstable working conditions driven by solar energy. Herein, a dynamic auto-adjusting ejector, equipped with a needle at the nozzle throat, is proposed to improve the ejector's performance under changeable operating conditions. A two-dimensional computational fluid dynamics (CFD) model is built to analyze the performance and flow field of the ejector. It is found that the achievable entrainment ratio gradually increases as the needle approaches the nozzle, and the entrainment ratio of the ejector is relatively stable, varying slightly between 1.1-1.2 when the primary pressure changes from 2.5 to 4 bar. Besides, the performance comparison between the proposed ejector and the traditional ejector is studied under the same primary pressure range. The entrainment ratio of the designed ejector was 1.6 times higher than that of the conventional ejector at a primary pressure of 2.5 bar. Furthermore, the average entrainment ratio of the designed ejector is 1.14, as compared to 0.84 for the traditional ejector. Overall, the proposed auto-adjusting ejector could be potentially used in MED-TVC desalination systems under variable conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。