Pathways Governing Polyethylenimine Polyplex Transfection in Microporous Annealed Particle Scaffolds

微孔退火颗粒支架中聚乙烯亚胺复合物转染的调控途径

阅读:4
作者:Norman F Truong, Sasha Cai Lesher-Pérez, Evan Kurt, Tatiana Segura

Abstract

Gene delivery using injectable hydrogels can serve as a potential method for regulated tissue regeneration in wound healing. Our microporous annealed particle (MAP) hydrogel has been shown to promote cellular infiltration in both skin and brain wounds, while reducing inflammation. Although the scaffold itself can promote healing, it is likely that other signals will be required to promote healing of hard-to-treat wounds. Gene delivery is one approach to introduce desired bioactive signals. In this study, we investigated how the properties of MAP hydrogels influence non-viral gene delivery of polyethylenimine-condensed plasmid to cells seeded within the MAP gel. From past studies, we found that gene transfer to cells seeded in tissue culture plastic differed from gene transfer to cells seeded inside hydrogel scaffolds. Since MAP scaffolds are generated from hydrogel microparticles that are approximately 100 μm in diameter, they display local characteristics that can be viewed as two-dimensional or three-dimensional to cells. Thus, we sought to study if gene transfer inside MAP scaffolds differed from gene transfer to cells seeded in tissue culture plastic. We sought to understand the roles of the endocytosis pathway, actin and microtubule dynamics, RhoGTPases, and YAP/TAZ on transfection of human fibroblasts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。