MS/MS Molecular Networking Unveils the Chemical Diversity of Biscembranoid Derivatives, Neutrophilic Inflammatory Mediators from the Cultured Soft Coral Sarcophyton trocheliophorum

MS/MS 分子网络揭示了养殖软珊瑚 Sarcophyton trocheliophorum 中双西米烷衍生物和中性粒细胞炎症介质的化学多样性

阅读:4
作者:Ngoc Bao An Nguyen, Lo-Yun Chen, Po-Jen Chen, Mohamed El-Shazly, Tsong-Long Hwang, Jui-Hsin Su, Chun-Han Su, Pei-Tzu Yen, Bo-Rong Peng, Kuei-Hung Lai

Abstract

Biscembranoids are the distinctive tetraterpenoids owing a 14/6/14 membered tricyclic scaffold that have been mainly discovered in the soft corals, especially the genera Sarcophyton, Lobophytum and Sinularia. Recent findings have demonstrated the great anti-inflammatory potential of biscembranoid analogues in human neutrophils, motivating more chemical and biological explorations targeting these marine-derived natural products. In the current study, the chemical diversity of biscembranoids derived from the cultured-type Sarcophyton trocheliophorum von Marenzeller was illustrated through MS/MS molecular networking (MN) profiling approach. Based on the MN patterns, the prioritization of unknown biscembranoid derivatives was putatively analyzed. As a result, the biscembrane targeting isolation afforded two new metabolites, sarcotrochelides A (1) and B (2), along with six known analogues (3-8). Their structures and relative configurations were determined by spectroscopic methods. In vitro neutrophil inflammatory inhibition was further investigated for all isolates based on reduced superoxide anion (O2•-) generation detections. Compounds 5-8 showed significant dose-dependently inhibitory effects, suggesting the cruciality of 6,7-dihydrooxepin-2(5H)-one moiety and saturated γ-lactone ring in their reactive oxygen species (ROS)-dependent anti-inflammatory properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。