Recruitment and activation of the ATM kinase in the absence of DNA-damage sensors

在没有 DNA 损伤传感器的情况下 ATM 激酶的募集和激活

阅读:7
作者:Andrea J Hartlerode, Mary J Morgan, Yipin Wu, Jeffrey Buis, David O Ferguson

Abstract

Two kinases, ATM and DNA-PKcs, control rapid responses to DNA double-strand breaks (DSBs). The paradigm for ATM control is recruitment and activation by the Mre11-Rad50-NBS1 (MRN) sensor complex, whereas DNA-PKcs requires the sensor Ku (Ku70-Ku80). Using mouse cells containing targeted mutant alleles of Mre11 (Mre11a) and/or Ku70 (Xrcc6), together with pharmacologic kinase inhibition, we demonstrate that ATM can be activated by DSBs in the absence of MRN. When MRN is deficient, DNA-PKcs efficiently substitutes for ATM in facilitating local chromatin responses. In the absence of both MRN and Ku, ATM is recruited to chromatin, where it phosphorylates H2AX and triggers the G2-M cell-cycle checkpoint, but the DNA-repair functions of MRN are not restored. These results suggest that, in contrast to straightforward recruitment and activation by MRN, a complex interplay between sensors has a substantial role in ATM control.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。