Upregulation of Nrf2 Signalling and the Inhibition of Erastin-Induced Ferroptosis by Ferulic Acid in MIN6 Cells

阿魏酸上调 MIN6 细胞中的 Nrf2 信号传导并抑制 Erastin 诱导的铁死亡

阅读:7
作者:Tugba Kose, Paul A Sharp, Gladys O Latunde-Dada

Abstract

Ferroptosis is a regulated cell death process characterised by the iron-dependent accumulation of oxidised polyunsaturated fatty acid-containing phospholipids. Its initiation is complicated and involves reactive oxygen species (ROS) and a loss of the activity of the lipid repair enzyme glutathione peroxidase 4 (GPX4). These play critical roles in the development of ferroptotic cell damage by lipid peroxidation. Antioxidant therapy is a promising therapeutic strategy to prevent or even reverse the progression of ferroptosis. This study was designed to demonstrate the protective effect of ferulic acid (FA) against oxidative stress and erastin-mediated ferroptosis in murine MIN6 cells. Cells were treated with FA or its metabolite ferulic acid 4-O-sulfate disodium salt (FAS) and 20 μM of erastin. Cell viability was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay, iron levels were measured by inductively coupled plasma mass spectrometry (ICP-MS), ROS levels were determined by a dihydrodichlorofluorescein (H2DCF) cell-permeant probe, and glutathione and lipid peroxidation were assayed with commercially available kits. The phenolic acids enhanced cell viability in erastin-treated MIN6 cells in a dose-dependent manner. Furthermore, MIN6 cells exposed to erastin alone showed elevated levels of iron and ROS, glutathione (GSH) depletion, and lipid peroxidation (p < 0.05) compared to cells that were protected by co-treatment with FA or FAS. The treatment of MIN6 cells with FA or FAS following exposure to erastin increased the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2) protein levels. Consequently, levels of its downstream antioxidant proteins, HO-1, NQO1, GCLC, and GPX4, increased. FA and FAS greatly decreased erastin-induced ferroptosis in the presence of the Nrf2 inhibitor, ML385, through the regulation of Nrf2 response genes. In conclusion, these results show that FA and FAS protect MIN6 cells from erastin-induced ferroptosis by the Nrf2 antioxidant protective mechanism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。