Anti-Psoriatic Effect of Rheum palmatum L. and Its Underlying Molecular Mechanisms

大黄的抗银屑病作用及其潜在的分子机制

阅读:4
作者:Ly Thi Huong Nguyen, Sang-Hyun Ahn, Heung-Mook Shin, In-Jun Yang

Abstract

Psoriasis is a chronic, immune-mediated inflammatory skin disorder. Rheum palmatum L. is a common traditional medicinal herb with anti-inflammatory and immunomodulatory activities. This study aimed to investigate the anti-psoriatic effects of the ethanolic extract from R. palmatum L. (RPE) and its chemical constituents, as well as the mechanisms underlying their therapeutic significance. An imiquimod (IMQ)-induced psoriasis-like mouse model was used to examine the anti-psoriatic effect of RPE in vivo. Network pharmacological analysis was performed to investigate the potential targets and related pathways of the RPE components, including rhein, emodin, chrysophanol, aloe-emodin, and physcion. The anti-inflammatory effects and underlying mechanisms of these components were examined using in vitro models. Topical application of RPE alleviated psoriasis-like symptoms and reduced levels of inflammatory cytokines and proliferation markers in the skin. Network pharmacological analysis revealed that RPE components target 20 genes that are linked to psoriasis-related pathways, such as IL-17, MAPK, and TNF signaling pathways. Among the five components of RPE, rhein and emodin showed inhibitory effects on TNF-α and IL-17 production in EL-4 cells, attenuated the production of CXCL8, CXCL10, CCL20, and MMP9, and reduced proliferation in HaCaT cells. Chrysophanol, aloe-emodin, and physcion were less effective than rhein and emodin in suppressing inflammatory responses and keratinocyte proliferation. The effects of these compounds might occur through the inhibition of the ERK, STAT3, and NF-κB signaling pathways. This study suggested the anti-psoriatic effect of RPE, with rhein and emodin as the main contributors that regulate multiple signaling pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。