Predicting Functional Responses of Progenitor Cell Exosome Potential with Computational Modeling

使用计算模型预测祖细胞外泌体潜能的功能反应

阅读:7
作者:David Trac, Jessica R Hoffman, Sruti Bheri, Joshua T Maxwell, Manu O Platt, Michael E Davis

Abstract

Congenital heart disease can lead to severe right ventricular heart failure (RVHF). We have shown that aggregated c-kit+ progenitor cells (CPCs) can improve RVHF repair, likely due to exosome-mediated effects. Here, we demonstrate that miRNA content from monolayer (2D) and aggregated (3D) CPC exosomes can be related to in vitro angiogenesis and antifibrosis responses using partial least squares regression (PLSR). PLSR reduced the dimensionality of the data set to the top 40 miRNAs with the highest weighted coefficients for the in vitro biological responses. Target pathway analysis of these top 40 miRNAs demonstrated significant fit to cardiac angiogenesis and fibrosis pathways. Although the model was trained on in vitro data, we demonstrate that the model can predict angiogenesis and fibrosis responses to exosome treatment in vivo with a strong correlation with published in vivo responses. These studies demonstrate that PLSR modeling of exosome miRNA content has the potential to inform preclinical trials and predict new promising CPC therapies. Stem Cells Translational Medicine 2019;8:1212-1221.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。