Endogenous BDNF regulates inhibitory synaptic transmission in the ventromedial nucleus of the hypothalamus

内源性 BDNF 调节下丘脑腹内侧核的抑制性突触传递

阅读:6
作者:Young-Hwan Jo

Abstract

Output from steroidogenic factor-1 (SF-1) neurons in the ventromedial nucleus of the hypothalamus (VMH) is anorexigenic. SF-1 neurons express brain-derived neurotrophic factor (BDNF) that contributes to the regulation of food intake and body weight. Here I show that regulation of GABAergic inputs onto SF-1 neurons by endogenous BDNF determines the anorexigenic outcome from the VMH. Single-cell RT-PCR analysis reveals that one-third of SF-1 neurons express BDNF and that only a subset of BDNF-expressing SF-1 neurons coexpresses the melanocortin receptor type 4. Whole cell patch-clamp analysis of SF-1 neurons in the VMH shows that exogenous BDNF significantly increases the frequency of spontaneous GABAergic inhibitory postsynaptic currents (sIPSCs). This enhancement of GABA drive readily decreases the excitability of SF-1 neurons. However, treatment with BDNF has no significant effect on the frequency of TTX-independent GABAergic IPSCs. Moreover, TrkB receptors are not localized at the postsynaptic sites of GABAergic synapses on SF-1 neurons as there is no change in the amplitude of miniature IPSCs in the presence of BDNF. Dual patch-clamp recordings in mouse hypothalamic slices reveal that stimulation of one SF-1 neuron induces an increase in sIPSC frequency onto the neighboring SF-1 neuron. More importantly, this effect is blocked by a tyrosine kinase inhibitor. Hence, this increased GABA drive onto SF-1 neurons may, in part, explain the cellular mechanisms that mediate the anorexigenic effects of BDNF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。