Molecular mechanism of tumour necrosis factor alpha regulates hypocretin (orexin) expression, sleep and behaviour

肿瘤坏死因子α调节下丘脑分泌素(食欲素)表达、睡眠和行为的分子机制

阅读:8
作者:Shuqin Zhan, Pulin Che, Xue-Ke Zhao, Ning Li, Yan Ding, Jianghong Liu, Spring Li, Karyn Ding, Lynn Han, Zhaoyang Huang, Liyong Wu, Yuping Wang, Meng Hu, Xiaosi Han, Qiang Ding

Abstract

Hypocretin 1 and hypocretin 2 (orexin A and B) regulate sleep, wakefulness and emotion. Tumour necrosis factor alpha (TNF-α) is an important neuroinflammation mediator. Here, we examined the effects of TNF-α treatment on hypocretin expression in vivo and behaviour in mice. TNF-α decreased hypocretin 1 and hypocretin 2 expression in a dose-dependent manner in cultured hypothalamic neurons. TNF-α decreased mRNA stability of prepro-hypocretin, the single precursor of hypocretin 1 and hypocretin 2. Mice challenged with TNF-α demonstrated decreased expression of prepro-hypocretin, hypocretin 1 and hypocretin 2 in hypothalamus. In response to TNF-α, prepro-hypocretin mRNA decay was increased in hypothalamus. TNF-α neutralizing antibody restored the expression of prepro-hypocretin, hypocretin 1 and hypocretin 2 in vivo in TNF-α challenged mice, supporting hypocretin system can be impaired by increased TNF-α through decreasing hypocretin expression. Repeated TNF-α challenge induced muscle activity during rapid eye movement sleep and sleep fragmentation, but decreased learning, cognition and memory in mice. TNF-α neutralizing antibody blocked the effects of TNF-α; in contrast, hypocretin receptor antagonist enhanced the effects of TNF-α. The data support that TNF-α is involved in the regulation of hypocretin expression, sleep and cognition. The findings shed some lights on the role of neuroinflammation in neurodegenerative diseases including Alzheimer's disease and Parkinson's disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。