Glycolytic Reprogramming in Myofibroblast Differentiation and Lung Fibrosis

肌成纤维细胞分化和肺纤维化中的糖酵解重编程

阅读:8
作者:Na Xie, Zheng Tan, Sami Banerjee, Huachun Cui, Jing Ge, Rui-Ming Liu, Karen Bernard, Victor J Thannickal, Gang Liu

Conclusions

Our data support the novel concept of glycolytic reprogramming in the pathogenesis of lung fibrosis and provide proof-of-concept that targeting this pathway may be efficacious in treating fibrotic disorders, such as idiopathic pulmonary fibrosis.

Methods

A cell metabolism assay was performed to determine glycolytic flux and mitochondrial respiration. Lactate levels were measured to assess glycolysis in fibroblasts and lungs. Glycolytic inhibition by genetic and pharmacologic approaches was used to demonstrate the critical role of glycolysis in lung fibrosis. Measurements and main

Results

Augmentation of glycolysis is an early and sustained event during myofibroblast differentiation, which is dependent on the increased expression of critical glycolytic enzymes, in particular, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3). Augmented glycolysis contributes to the stabilization of hypoxia-inducible factor 1-α, a master regulator of glycolytic enzymes implicated in organ fibrosis, by increasing cellular levels of tricarboxylic acid cycle intermediate succinate in lung myofibroblasts. Inhibition of glycolysis by the PFKFB3 inhibitor 3PO or genomic disruption of the PFKFB3 gene blunted the differentiation of lung fibroblasts into myofibroblasts, and attenuated profibrotic phenotypes in myofibroblasts isolated from the lungs of patients with idiopathic pulmonary fibrosis. Inhibition of glycolysis by 3PO demonstrates therapeutic benefit in bleomycin-induced and transforming growth factor-β1-induced lung fibrosis in mice. Conclusions: Our data support the novel concept of glycolytic reprogramming in the pathogenesis of lung fibrosis and provide proof-of-concept that targeting this pathway may be efficacious in treating fibrotic disorders, such as idiopathic pulmonary fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。