Three-Dimensional Modeling with Osteoblast-like Cells under External Magnetic Field Conditions Using Magnetic Nano-Ferrite Particles for the Development of Cell-Derived Artificial Bone

利用磁性纳米铁氧体粒子在外部磁场条件下进行成骨细胞样细胞的三维建模,以开发细胞衍生的人工骨

阅读:6
作者:Chuang Ma, Makoto Izumiya, Hidehiko Nobuoka, Rintaro Ueno, Masaki Mimura, Katsuya Ueda, Haruka Ishida, Daihachiro Tomotsune, Kohei Johkura, Fengming Yue, Naoto Saito, Hisao Haniu

Abstract

The progress in artificial bone research is crucial for addressing fractures and bone defects in the aging population. However, challenges persist in terms of biocompatibility and structural complexity. Nanotechnology provides a promising avenue by which to overcome these challenges, with nano-ferrite particles (NFPs) exhibiting superparamagnetic properties. The ability to control cell positioning using a magnetic field opens up new possibilities for customizing artificial bones with specific shapes. This study explores the biological effects of NFPs on osteoblast-like cell lines (MC3T3-E1), including key analyses, such as cell viability, cellular uptake of NFPs, calcification processes, cell migration under external magnetic field conditions, and three-dimensional modeling. The results indicate that the impact of NFPs on cell proliferation is negligible. Fluorescence and transmission electron microscopy validated the cellular uptake of NFPs, demonstrating the potential for precise cell positioning through an external magnetic field. Under calcification-inducing conditions, the cells exhibited sustained calcification ability even in the presence of NFPs. The cell movement analysis observed the controlled movement of NFP-absorbing cells under an external magnetic field. Applying a magnetic field along the z-axis induced the three-dimensional shaping of cells incorporating NFPs, resulting in well-arranged z-axis directional patterns. In this study, NFPs demonstrated excellent biocompatibility and controllability under an external magnetic field, laying the foundation for innovative treatment strategies for customizing artificial bones.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。