Conclusions
Despite the known deleterious effects of smoke inhalation, moderate-intensity aerobic exercise while exposed to woodsmoke particulate matter (250 μg·m-3) did not result in a statistically significant difference in HRV, PWV, or blood oxidative stress in this methodologic context. Although findings do not negate the negative impact of woodsmoke inhalation, additional research approaches are needed to better understand the acute effects of smoke exposure on the cardiovascular system.
Methods
Ten participants performed 2 moderate-intensity exercise (70% V˙O2 max) trials (clean air 0 μg·m-3, woodsmoke 250 μg·m-3) in a crossover design. HRV, PWV, BP, AIx, and blood oxidative stress were measured before, after, and 90 min after exercise for each trial. Blood oxidative stress was quantified through lipid damage (LOOH, 8-ISO), protein damage (3-NT, PC), and antioxidant capacity (TEAC).
Results
A 45-min woodsmoke exposure combined with moderate-intensity exercise did not result in a statistically significant difference in HRV, PWV, BP, AIx, or oxidative stress (P>0.05). Conclusions: Despite the known deleterious effects of smoke inhalation, moderate-intensity aerobic exercise while exposed to woodsmoke particulate matter (250 μg·m-3) did not result in a statistically significant difference in HRV, PWV, or blood oxidative stress in this methodologic context. Although findings do not negate the negative impact of woodsmoke inhalation, additional research approaches are needed to better understand the acute effects of smoke exposure on the cardiovascular system.
