Effect of Intercritical Temperature on the Microstructure and Mechanical Properties of a Ferritic-Martensitic Dual-Phase Low-Alloy Steel with Varying Nickel Content

临界温度对不同镍含量铁素体-马氏体双相低合金钢组织和力学性能的影响

阅读:13
作者:Esteban Rodoni, Kim Verbeken, Tom Depover, Mariano Iannuzzi

Abstract

Dual-phase low-alloy steels combine a soft ferrite phase with a hard martensite phase to create desirable properties in terms of strength and ductility. Nickel additions to dual-phase low-alloy steels can increase the yield strength further and lower the transformation temperatures, allowing for microstructure refining. Determining the correct intercritical annealing temperature as a function of nickel content is paramount, as it defines the microstructure ratio between ferrite and martensite. Likewise, quantifying the influence of nickel on the intercritical temperature and its synergistic effect with the microstructure ratio on mechanical properties is vital to designing dual-phase steels suitable for corrosive oil and gas services as well as hydrogen transport and storage applications. In this work, we used a microstructural design to develop intercritical annealing heat treatments to obtain dual-phase ferritic-martensitic low-alloy steels. The intercritical annealing and tempering temperatures and times were targeted to achieve three different martensite volume fractions as a function of nickel content, with a nominal content varying between 0, 1, and 3-wt% Ni. Mechanical properties were characterized using tensile testing and microhardness measurements. Additionally, the microstructure was studied using scanning electron microscopy coupled with electron backscatter diffraction analysis. Tensile strength increased with increasing martensite ratio and nickel content, with a further grain refinement effect found in the 3-wt% Ni steel. The optimal heat treatment parameters for oil and gas and hydrogen transport applications are discussed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。