Microstructure and Friction Response of a Novel Eutectic Alloy Based on the Fe-C-Mn-B System

基于 Fe-C-Mn-B 体系的新型共晶合金的微观结构和摩擦响应

阅读:7
作者:Oleksandr Tisov, Mykhaylo Pashechko, Alina Yurchuk, Dariusz Chocyk, Jarosław Zubrzycki, Aleksandra Prus, Magda Wlazło-Ćwiklińska

Abstract

This paper focuses on the microstructure and tribological properties of novel hardfacing alloy based on Fe-C-Mn-B doped with Ni, Cr, and Si. The 4 mm-thick coating was deposited on the AISI 1045 carbon steel by the MIG-welding method using flux-cored wires in three passes. The transition zone thickness between the weld layers was ~80 μm, and the width of the substrate-coating interface was 5-10 μm. The following coating constituents were detected: coarser elongated M2B borides, finer particles of Cr7C3 carbides, and an Fe-based matrix consisting of ferrite and austenite. The nanohardness of the matrix was ~5-6 GPa, carbides ~16-19 GPa, and borides 22-23 GPa. A high cooling rate during coating fabrication leads to the formation of a fine mesh of M7C3 carbides; borides grow in the direction of heat removal, from the substrate to the friction surface, while in the transition zone, carbides become coarser. The dry sliding friction tests using a tribometer in PoD configuration were carried out at contact pressure 4, 7, 10, and 15 MPa against the AISI 1045 carbon steel (water-quenched and low-tempered, 50-52 HRC). The leading wear phenomenon at 4 and 7 MPa is fatigue, and at 10 and 15 MPa it is oxidation and delamination.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。