TAZ responds to fluid shear stress to regulate the cell cycle

TAZ 响应流体剪切应力来调节细胞周期

阅读:6
作者:Hyun Jung Lee, Adesuwa Ewere, Miguel F Diaz, Pamela L Wenzel

Abstract

Physical forces associated with tumor growth and drainage alter cancer cell invasiveness and metastatic potential. We previously showed that fluid frictional force, or shear stress, typical of lymphatic flow induces YAP1/TAZ activation in prostate cancer cells to promote motility dependent upon YAP1 but not TAZ. Here, we show that shear stress elevates TAZ protein levels and promotes TAZ nuclear localization. Increased TAZ activity drives increased DNA synthesis and induces AMOTL2, ANKRD1, and CTGF gene transcription independently of YAP1. Ectopic expression of constitutively activated TAZ increases expression of these TAZ target genes and promotes cell proliferation of prostate cancer cells. Conversely, silencing of TAZ results in reduced proliferation. Together, our data show that force-induced TAZ regulates signaling that dictates cell division, and suggest that TAZ may govern cellular proliferation of cancer cells traveling through the lymphatics in response to biophysical cues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。