Fabrication of Mn-Doped SrTiO3/Carbon Fiber with Oxygen Vacancy for Enhanced Photocatalytic Hydrogen Evolution

制备具有氧空位的 Mn 掺杂 SrTiO3/碳纤维以增强光催化产氢

阅读:6
作者:Qi Hu, Jiantao Niu, Ke-Qin Zhang, Mu Yao

Abstract

With carbon fiber, it is difficult to load semiconductor photocatalysts and easy to shed off thanks to its smooth surface and few active groups, which has always been a problem in the synthesis of photocatalysts. In the study, SrTiO3 nanoparticles were loaded onto the Tencel fibers using the solvothermal method, and then the Tencel fibers were carbonized at a high temperature under the condition of inert gas to form carbon fibers, thus SrTiO3@CF photocatalytic composite materials with solid core shell structure were prepared. Meanwhile, Mn ions were added into the SrTiO3 precursor reagent in the solvothermal experiment to prepare Mn-doped Mn-SrTiO3@CF photocatalytic composite material. XPS and EPR tests showed that the prepared Mn-SrTiO3@CF photocatalytic composite was rich in oxygen vacancies. The existence of these oxygen vacancies formed oxygen defect states (VOs) below the conduction band, which constituted the capture center of photogenerated electrons and significantly improved the photocatalytic activity. The photocatalytic hydrogen experimental results showed that the photocatalytic hydrogen production capacity of Mn-SrTiO3@CF composite material with 5% Mn-doped was six times that of the SrTiO3@CF material, and the doping of Mn ions not only promoted the red shift of the light absorption boundary and the extension to visible light, but also improved the separation and migration efficiency of photocarriers. In the paper, the preparation method solves the difficulty of loading photocatalysts on CF and provides a new design method for the recycling of catalysts, and we improve the hydrogen production performance of photocatalysts by Mn-doped modification and the introduction of oxygen vacancies, which provides a theoretical method for the practical application of hydrogen energy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。