Age-related differences in cigarette smoke extract-induced H2O2 production by lung endothelial cells

香烟烟雾提取物诱导肺内皮细胞产生 H2O2 的年龄相关差异

阅读:6
作者:Charles A Downs, David W Montgomery, Carrie J Merkle

Abstract

Cigarette smoke causes oxidative stress in the lung resulting in injury and disease. The purpose of this study was to determine if there were age-related differences in cigarette smoke extract (CSE)-induced production of reactive species in single and co-cultures of alveolar epithelial type I (AT I) cells and microvascular endothelial cells harvested from the lungs (MVECLs) of neonatal, young and old male Fischer 344 rats. Cultures of AT I cells and MVECLs grown separately (single culture) and together (co-culture) were exposed to CSE (1, 10, 50, 100%). Cultures were assayed for the production of intracellular reactive oxygen species (ROS), hydroxyl radical (OH), peroxynitrite (ONOO(-)), nitric oxide (NO) and extracellular hydrogen peroxide (H(2)O(2)). Single and co-cultures of AT I cells and MVECLs from all three ages produced minimal intracellular ROS in response to CSE. All ages of MVECLs produced H(2)O(2) in response to CSE, but young MVECLs produced significantly less H(2)O(2) compared to neonatal and old MVECLs. Interestingly, when grown as a co-culture with age-matched AT I cells, neonatal and old MVECLs demonstrated ~50% reduction in H(2)O(2) production in response to CSE. However, H(2)O(2) production in young MVECLs grown as a co-culture with young AT I cells did not change with CSE exposure. To begin investigating for a potential mechanism to explain the reduction in H(2)O(2) production in the co-cultures, we evaluated single and co-cultures for extracellular total antioxidant capacity. We also performed gene expression profiling specific to oxidant and anti-oxidant pathways. The total antioxidant capacity of the AT I cell supernatant was ~5 times greater than that of the MVECLs, and when grown as a co-culture and exposed to CSE (≥ 10%), the total antioxidant capacity of the supernatant was reduced by ~50%. There were no age-related differences in total antioxidant capacity of the cell supernatants. Gene expression profiling found eight genes to be significantly up-regulated or down-regulated. This is the first study to describe age-related differences in MVECLs exposed to CSE.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。