Conserved mechanisms of self-renewal and pluripotency in mouse and human ESCs regulated by simulated microgravity using a 3D clinostat

利用三维旋转器模拟微重力,研究小鼠和人类胚胎干细胞中保守的自我更新和多能性机制。

阅读:1
作者:Ying Ye # ,Wenyan Xie # ,Zhaoru Ma # ,Xuepeng Wang ,Yi Wen ,Xuemei Li ,Hongqian Qi ,Hao Wu ,Jinnan An ,Yan Jiang ,Xinyi Lu ,Guokai Chen ,Shijun Hu ,Elizabeth A Blaber ,Xi Chen ,Lei Chang ,Wensheng Zhang

Abstract

Embryonic stem cells (ESCs) exhibit unique attributes of boundless self-renewal and pluripotency, making them invaluable for fundamental investigations and clinical endeavors. Previous examinations of microgravity effects on ESC self-renewal and differentiation have predominantly maintained a descriptive nature, constrained by limited experimental opportunities and techniques. In this investigation, we present compelling evidence derived from murine and human ESCs, demonstrating that simulated microgravity (SMG)-induced stress significantly impacts self-renewal and pluripotency through a previously unidentified conserved mechanism. Specifically, SMG induces the upregulation of heat shock protein genes, subsequently enhancing the expression of core pluripotency factors and activating the Wnt and/or LIF/STAT3 signaling pathways, thereby fostering ESC self-renewal. Notably, heightened Wnt pathway activity, facilitated by Tbx3 upregulation, prompts mesoendodermal differentiation in both murine and human ESCs under SMG conditions. Recognizing potential disparities between terrestrial SMG simulations and authentic microgravity, forthcoming space flight experiments are imperative to validate the impact of reduced gravity on ESC self-renewal and differentiation mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。