Post-transcriptional gene silencing of KChIP2 and Navbeta1 in neonatal rat cardiac myocytes reveals a functional association between Na and Ito currents

新生大鼠心肌细胞中 KChIP2 和 Navbeta1 的转录后基因沉默揭示了 Na 和 Ito 电流之间的功能关联

阅读:4
作者:Isabelle Deschênes, Antonis A Armoundas, Steven P Jones, Gordon F Tomaselli

Abstract

The Ca(2+)-independent transient outward potassium current (I(to)) encoded by the Kv4 family of potassium channels, is central to normal repolarization of cardiac myocytes. KChIPs are a group of Ca(2+)-binding accessory subunits that modulate Kv4-encoded currents. However, the biophysical effects of KChIP2 on Kv4 currents raise questions about the role that KChIP2 plays in forming the native I(to). Previous heterologous expression studies demonstrated that the Na channel beta1 subunit modulates the gating properties of Kv4.3 to closely recapitulate native I(to) suggesting that Na(v)beta1 may modulate the function of Kv4-encoded channels in native cardiomyocytes. Therefore we hypothesized the existence of a structural or functional complex between subunits of I(to) and I(Na). In co-immunoprecipitation of proteins from neonatal rat ventricular myocardium (NRVM), Na(v)beta1 was pulled-down by Kv4.x antibodies suggesting a structural association between subunits that comprise I(to) and I(Na). Remarkably, post-transcriptional gene silencing of KChIP2 in NRVM, using small interfering RNAs specific to KChIP2, suppressed both cardiac I(to) and I(Na) consistent with a functional coupling of these channels. KChIP2 silencing suppressed Na channel alpha and beta1 subunit mRNA levels, leaving Kv4.x mRNAs unaltered, but reducing levels of immunoreactive proteins. Post-transcriptional gene silencing of Na(v)beta1 reduced its protein expression. Silencing of Na(v)beta1 also reduced mRNA and protein levels of its alpha-subunit, Na(v)1.5. Surprisingly, silencing of Na(v)beta1 also produced a reduction in KChIP2 mRNA and protein as well as Kv4.x proteins resulting in remarkably decreased I(Na) and I(to). These data are consistent with a novel structural and functional association of I(Na) and I(to) in NRVMs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。