Verbenalin Reduces Amyloid-Beta Peptide Generation in Cellular and Animal Models of Alzheimer's Disease

马鞭草苷可减少阿尔茨海默病细胞和动物模型中的淀粉样β肽生成

阅读:6
作者:Juhee Lim, Seokhee Kim, Changhyun Lee, Jeongwoo Park, Gabsik Yang, Taehan Yook

Abstract

Verbenalin, among the major constituents of Verbena officinalis, has been reported to exhibit sleep-promoting and antioxidant activities. This study demonstrates the effects of verbenalin on amyloid-beta (Aβ) peptide generation in Swedish mutant amyloid precursor protein (APP)-overexpressing Neuro2a cells (SweAPP/N2a) and in Alzheimer's disease (AD) animal models. We further performed molecular biological analyses of these in vitro and in vivo models of AD. The effects of verbenalin were assessed based on the expression of factors related to Aβ peptide production using Western blotting, enzyme-linked immunosorbent assay, and immunohistochemistry (IHC). The intracellular expression and release of APP protein were both decreased by verbenalin treatment in SweAPP/N2a cells. Thus, the production of Aβ peptides was decreased. Compared to those in AD transgenic (Tg) mice, IHC revealed that verbenalin-treated animals showed decreased Aβ and tau expression levels in the hippocampus. In addition, verbenalin restored the expression of brain-derived neurotrophic factor (BDNF) in the hippocampus of AD animal models. These findings suggest that verbenalin may decrease Aβ formation both in vitro and in vivo. Verbenalin may also help improve the pathological hallmarks of AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。