Neutrophils exacerbate acetaminophen-induced liver injury by producing cytotoxic interferon-γ

中性粒细胞通过产生细胞毒性干扰素-γ加剧对乙酰氨基酚引起的肝损伤

阅读:6
作者:Hao Wu, Chunqing Guo, Zheng Liu, Jinyang Cai, Chong Wang, Huanfa Yi, Arun Sanyal, Puneet Puri, Huiping Zhou, Xiang-Yang Wang

Background

Drug (e.g., acetaminophen, APAP)-associated hepatotoxicity is the major cause of acute liver failure. Emerging evidence shows that initial tissue damage caused by APAP triggers molecular and cellular immune responses, which can modulate the severity of hepatoxicity. The pro-inflammatory and cytotoxic cytokine interferon (IFN)-γ has been reported as a key molecule contributing to APAP-induced liver injury (AILI). However, its cellular source remains undetermined.

Conclusions

Our findings uncover a novel mechanism of neutrophil action in promoting AILI and provide new insights into immune modulation of the disease pathogenesis.

Results

In the current study, we show that elevation of serum IFN-γ in patients with drug hepatotoxicity correlates with disease severity. Neutralization of IFN-γ in a mouse model of AILI effectively reduces hepatotoxicity. Strikingly, we reveal that IFN-γ is expressed primarily by hepatic neutrophils, not by conventional immune cells with known IFN-γ-producing capability, e.g., CD8+ T cells, CD4+ T cells, natural killer cells, or natural killer T cells. Upon encountering APAP-injured hepatocytes, neutrophils secrete cytotoxic IFN-γ further causing cell stress and damage, which can be abrogated in the presence of blocking antibodies for IFN-γ or IFN-γreceptor. Furthermore, removal of neutrophils in vivo substantially decreases hepatic IFN-γ levels concomitantly with reduced APAP hepatotoxicity, whereas adoptive transfer of IFN-γ-producing neutrophils confers IFN-γ-/- mice susceptibility to APAP administration. Conclusions: Our findings uncover a novel mechanism of neutrophil action in promoting AILI and provide new insights into immune modulation of the disease pathogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。