Neocortical High Probability Release Sites Are Formed by Distinct Ca2+ Channel-to-Release Sensor Topographies during Development

新皮质高概率释放位点是由发育过程中不同的 Ca2+ 通道释放传感器拓扑结构形成的

阅读:7
作者:Grit Bornschein, Jens Eilers, Hartmut Schmidt

Abstract

Coupling distances between Ca2+ channels and release sensors regulate vesicular release probability (pv). Tight coupling is thought to provide a framework for high pv and loose coupling for high plasticity at low pv. At synapses investigated during development, coupling distances decrease, thereby increasing pv and transmission fidelity. We find that neocortical high-fidelity synapses deviate from these rules. Paired recordings from pyramidal neurons with "slow" and "fast" Ca2+ chelators combined with experimentally constrained simulations suggest that coupling tightens significantly during development. However, fluctuation analysis revealed that neither pv (∼0.63) nor the number of release sites (∼8) changes concomitantly. Moreover, the amplitude and time course of presynaptic Ca2+ transients are not different between age groups. These results are explained by high-pv release sites with Ca2+ microdomains in young synapses and nanodomains in mature synapses. Thus, at neocortical synapses, a developmental reorganization of the active zone leaves pv unaffected, emphasizing developmental and functional synaptic diversity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。