Abstract
Depression is characterized by persistent depressed mood and cognitive dysfunction, severely impacting human health. In the present study, we aimed to explore the role and mechanism of microRNA (miR)-212 in depression in vivo. Chronic unpredictable mild stress (CUMS) mice were established, and depression-like behaviors were confirmed using the forced swimming test (FST), sucrose preference test (SPT), and the tail suspension test (TST). Next, the expression of miR-212 and its potential target, i.e., nuclear factor I-A (NFIA), was verified using quantitative reverse transcription (qRT)-PCR analysis and Western blotting in CUMS mice. The effects of miR-212 and NFIA on depression-like behaviors, inflammatory response, and neuronal apoptosis were examined using FST, TST, SPT, enzyme-linked immunosorbent assay (ELISA) assay, and flow cytometry analysis. Finally, the relationship between miR-212 and NFIA was examined using a dual-luciferase reporter assay. Based on our findings, miR-212 was significantly upregulated, while NFIA was downregulated in CUMS mice. miR-212 overexpression could suppress the CUMS-induced weight loss, immobility time in FST and TST, and increased hippocampal neuronal apoptosis and pro-inflammatory cytokines levels. In addition, NFIA upregulation could partially reverse the effects of miR-212 mimic in CUMS mice. Accordingly, miR-212 could ameliorate CUMS-induced depression-like behavior in mice by targeting NFIA, indicating its protective role in depression.
