Optimization of a multiplex CRISPR/Cas system for use as an antiviral therapeutic

优化多重 CRISPR/Cas 系统以用于抗病毒治疗

阅读:12
作者:Edward M Kennedy, Anand V R Kornepati, Adam L Mefferd, Joy B Marshall, Kevin Tsai, Hal P Bogerd, Bryan R Cullen

Abstract

RNA-guided endonucleases or CRISPR/Cas systems have been widely employed for gene engineering/DNA editing applications, and have recently been used against a variety of dsDNA viruses as a potential therapeutic. However, in vivo delivery to specific tissue reservoirs using adeno-associated virus (AAV) vectors is problematic due to the large coding requirement for the principal effector commonly used in these applications, Streptococcus pyogenes (Spy) Cas9. Here we describe design of a minimal CRISPR/Cas system that is capable of multiplexing and can be packaged into a single AAV vector. This system consists of the small Type II Cas9 protein from Staphylococcus aureus (Sau) driven by a truncated CMV promoter/enhancer, and flanked 3' by a poly(A) addition signal, as well as two sgRNA expression cassettes driven by either U6 or ∼70-bp tRNA-derived Pol III promoters. Specific protocols for construction of these AAV vector scaffolds, shuttle cloning of their contents into AAV and lentiviral backbones, and a quantitative luciferase assay capable of screening for optimal sgRNAs, are detailed. These protocols can facilitate construction of AAV vectors that have optimal multiplexed sgRNA expression and function. These will have potential utility in multiplex applications, including in antiviral therapy in tissues chronically infected with a pathogenic DNA virus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。