Autophagy Activation Represses Pyroptosis through the IL-13 and JAK1/STAT1 Pathways in a Mouse Model of Moderate Traumatic Brain Injury

自噬激活通过 IL-13 和 JAK1/STAT1 通路抑制中度创伤性脑损伤小鼠模型中的细胞焦亡

阅读:7
作者:Cheng Gao, Ya'nan Yan, Guang Chen, Tao Wang, Chengliang Luo, Mingyang Zhang, Xiping Chen, Luyang Tao

Abstract

The newly highlighted research into programmed cell death (PCD), autophagy dependent cell death and pyroptotic cell death, has shown that these processes are both strongly correlated with the pathological progression of traumatic brain injury (TBI). However, their cross-talk in TBI remains unclear. Here, a moderate TBI model was established to explore the relationship between autophagy and pyroptosis. Rapamycin was used to activate the process of autophagy, which was impaired in the moderate TBI model, and this treatment reversed the expression of pyroptosis associated proteins, interleukin-13 (IL-13) and the pJAK-1 pathway, which were upregulated significantly after TBI. The level of IL-13 was downregulated, and the JAK-1 pathway was blocked to reveal the molecular mechanisms by which autophagy inhibits pyroptosis; these two treatments reduced the expression levels of pyroptosis associated proteins. In addition, these three interventions reduced the formation of neuronal NLRP3, the extent of brain edema, and the degree of cortical neuron degeneration. Furthermore, the deficit in motor function post-TBI was also markedly alleviated. Collectively, our results demonstrated that autophagy activation exerts a neuroprotective effect by inhibiting pyroptotic cell death in the moderate TBI model, and the inhibitory effect was dependent on the downregulation of IL-13 and repression of the JAK-1-STAT-1 signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。