Proteogenomic analysis of chemo-refractory high-grade serous ovarian cancer

化疗难治性高级别浆液性卵巢癌的蛋白质基因组学分析

阅读:1
作者:Shrabanti Chowdhury ,Jacob J Kennedy ,Richard G Ivey ,Oscar D Murillo ,Noshad Hosseini ,Xiaoyu Song ,Francesca Petralia ,Anna Calinawan ,Sara R Savage ,Anna B Berry ,Boris Reva ,Umut Ozbek ,Azra Krek ,Weiping Ma ,Felipe da Veiga Leprevost ,Jiayi Ji ,Seungyeul Yoo ,Chenwei Lin ,Uliana J Voytovich ,Yajue Huang ,Sun-Hee Lee ,Lindsay Bergan ,Travis D Lorentzen ,Mehdi Mesri ,Henry Rodriguez ,Andrew N Hoofnagle ,Zachary T Herbert ,Alexey I Nesvizhskii ,Bing Zhang ,Jeffrey R Whiteaker ,David Fenyo ,Wilson McKerrow ,Joshua Wang ,Stephan C Schürer ,Vasileios Stathias ,X Steven Chen ,Mary Helen Barcellos-Hoff ,Timothy K Starr ,Boris J Winterhoff ,Andrew C Nelson ,Samuel C Mok ,Scott H Kaufmann ,Charles Drescher ,Marcin Cieslik ,Pei Wang ,Michael J Birrer ,Amanda G Paulovich

Abstract

To improve the understanding of chemo-refractory high-grade serous ovarian cancers (HGSOCs), we characterized the proteogenomic landscape of 242 (refractory and sensitive) HGSOCs, representing one discovery and two validation cohorts across two biospecimen types (formalin-fixed paraffin-embedded and frozen). We identified a 64-protein signature that predicts with high specificity a subset of HGSOCs refractory to initial platinum-based therapy and is validated in two independent patient cohorts. We detected significant association between lack of Ch17 loss of heterozygosity (LOH) and chemo-refractoriness. Based on pathway protein expression, we identified 5 clusters of HGSOC, which validated across two independent patient cohorts and patient-derived xenograft (PDX) models. These clusters may represent different mechanisms of refractoriness and implicate putative therapeutic vulnerabilities. Keywords: chemorefractory; high-grade serous ovarian cancer; machine learning; mass spectrometry; multiple reaction monitoring; platinum; precision oncology; predictive biomarker; prognostic biomarker; proteogenomic.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。