Enhanced apoptosis as a possible mechanism to self-limit SARS-CoV-2 replication in porcine primary respiratory epithelial cells in contrast to human cells

与人类细胞相比,猪原代呼吸道上皮细胞中细胞凋亡增强可能是自我限制 SARS-CoV-2 复制的一种可能机制

阅读:3
作者:Rahul K Nelli, Kruttika-S Phadke, Gino Castillo, Lu Yen, Amy Saunders, Rolf Rauh, William Nelson, Bryan H Bellaire, Luis G Giménez-Lirola

Abstract

The ability of SARS-CoV to infect different species, including humans, dogs, cats, minks, ferrets, hamsters, tigers, and deer, pose a continuous threat to human and animal health. Pigs, though closely related to humans, seem to be less susceptible to SARS-CoV-2. Former in vivo studies failed to demonstrate clinical signs and transmission between pigs, while later attempts using a higher infectious dose reported viral shedding and seroconversion. This study investigated species-specific cell susceptibility, virus dose-dependent infectivity, and infection kinetics, using primary human (HRECs) and porcine (PRECs) respiratory epithelial cells. Despite higher ACE2 expression in HRECs compared to PRECs, SARS-CoV-2 infected, and replicated in both PRECs and HRECs in a dose-dependent manner. Cytopathic effect was particularly more evident in PRECs than HRECs, showing the hallmark morphological signs of apoptosis. Further analysis confirmed an early and enhanced apoptotic mechanism driven through caspase 3/7 activation, limiting SARS-CoV-2 propagation in PRECs compared to HRECs. Our findings shed light on a possible mechanism of resistance of pigs to SARS-CoV-2 infection, and it may hold therapeutic value for the treatment of COVID-19.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。