Alteration in memory cognition due to activation of caveolin-1 and oxidative damage in a model of dementia of Alzheimer's type

阿尔茨海默氏症模型中 Caveolin-1 的激活和氧化损伤导致记忆认知发生改变

阅读:8
作者:Ankita Gupta, Ashish Sharma, Anil Kumar, Rohit Goyal

Conclusion

The findings from the present investigation may conclude that the caveolin-1 from caveolae at the cell membrane induces memory deficits and oxidative stress phenotype that resemble the neurological phenotype of Alzheimer's disease. Further studies are warranted to gauge the effect of caveolin dyshomeostasis on the amyloidogenic cascade.

Methods

Male Wistar rats (220-260 g) were employed. STZ 3 mg/kg via ICV route was given once to cause neuronal injury. Daidzein - a caveolin inhibitor at 0.2, 0.4, and 0.6 mg/kg s.c. were given daily whereas minoxidil - a caveolin activator was given at 0.45 mg/kg, i.p. on alternate days for 28 days. STZ was also given at its submaximal dose 1.5 mg/kg to minoxidil group only.

Objective

The present study aims to investigate the role of caveolin-1 in dementia of Alzheimer's type using intracerebroventricular streptozotocin (ICV-STZ)-induced neurodegeneration model in rats. Materials and

Results

ICV-STZ control animals exhibited cognitive and neurological deficits on the Morris water maze, elevated plus maze, and balance beam tests (P < 0.0001). Treatment with daidzein significantly restored memory impairments and decreased oxidative damage whereas minoxidil potentiates the effect of STZ causing significant impairment in memory. Significant oxidative stress such as lipid peroxidation and glutathione (P < 0.0001) were also observed due to ICV-STZ administration resulting in neuronal damage which was significantly prevented by treatment with daidzein in brain tissues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。