Characterization of an Orthotopic Colorectal Cancer Mouse Model and Its Feasibility for Accurate Quantification in Positron Emission Tomography

原位结直肠癌小鼠模型的表征及其在正电子发射断层扫描中准确量化的可行性

阅读:8
作者:Sara Rapic, Christel Vangestel, Jeroen Verhaeghe, Tim Van den Wyngaert, Rukun Hinz, Marleen Verhoye, Patrick Pauwels, Steven Staelens, Sigrid Stroobants

Conclusions

This orthotopic mouse model proved to be a promising tool for the investigation of CRC through preclinical imaging studies provided the availability of anatomical MR images for accurate tumor delineation. Furthermore, the tumor microenvironment of the orthotopic tumor resembled more that of human CRC, increasing its likelihood to advance translational nuclear imaging studies of CRC.

Procedures

A subcutaneous Colo205-luc2 tumor fragment harvested from a donor mouse was transplanted onto the caecum of nude mice, with (n = 10) or without (n = 10) the addition of an X-ray detectable thread. Animals underwent 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET imaging, complemented with X-ray computed tomography (CT) and magnetic resonance imaging (MRI, 7T). Animals without a thread underwent additional contrast enhanced (Exitron) CT imaging. Tumors were delineated on the MRI, μPET image or contrast enhanced μCT images and correlations between in vivo and ex vivo [18F]FDG tumor uptake as well as between image-derived and caliper-measured tumor volume were evaluated. Finally, cancer hallmarks were assessed immunohistochemically for the characterization of both models.

Purpose

Quantification in positron emission tomography (PET) imaging of an orthotopic mouse model of colorectal cancer (CRC) is challenging due to difficult tumor delineation. We aimed to establish a reproducible delineation approach, evaluate its feasibility for reliable PET quantification and compare its added translational value with its subcutaneous counterpart. Procedures: A subcutaneous Colo205-luc2 tumor fragment harvested from a donor mouse was transplanted onto the caecum of nude mice, with (n = 10) or without (n = 10) the addition of an X-ray detectable thread. Animals underwent 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET imaging, complemented with X-ray computed tomography (CT) and magnetic resonance imaging (MRI, 7T). Animals without a thread underwent additional contrast enhanced (Exitron) CT imaging. Tumors were delineated on the MRI, μPET image or contrast enhanced μCT images and correlations between in vivo and ex vivo [18F]FDG tumor uptake as well as between image-derived and caliper-measured tumor volume were evaluated. Finally, cancer hallmarks were assessed immunohistochemically for the characterization of both models.

Results

Our results showed the strongest correlation between both in vivo and ex vivo uptake (r = 0.84, p < 0.0001) and image-derived and caliper-measured tumor volume (r = 0.96, p < 0.0001) when the tumor was delineated on the MR image. Orthotopic tumors displayed an abundance of stroma, higher levels of proliferation (p = 0.0007), apoptosis (p = 0.02), and necrosis (p < 0.0001), a higher number of blood vessels (p < 0.0001); yet lower tumor hypoxia (p < 0.0001) as compared with subcutaneous tumors. Conclusions: This orthotopic mouse model proved to be a promising tool for the investigation of CRC through preclinical imaging studies provided the availability of anatomical MR images for accurate tumor delineation. Furthermore, the tumor microenvironment of the orthotopic tumor resembled more that of human CRC, increasing its likelihood to advance translational nuclear imaging studies of CRC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。